Relation between Topological Organization and Learning Ability of Neural Networks
نویسندگان
چکیده
The objective of this study is to investigate the correlation between the internal topological organization in neural network and the learning ability of the neural network. This study is motivated by the interesting neurophysiological examination that shows the significance of topographic map of adult mammals’brains to their learning ability and plasticity. In this study we propose a model of a layered neural network with Self-Organizing Map in its hidden layer which is connected to Perceptron as a learning part. We run several simulations to show the significant of the topological order in helping the learning process and relearning process.
منابع مشابه
A New Method to Improve Automated Classification of Heart Sound Signals: Filter Bank Learning in Convolutional Neural Networks
Introduction: Recent studies have acknowledged the potential of convolutional neural networks (CNNs) in distinguishing healthy and morbid samples by using heart sound analyses. Unfortunately the performance of CNNs is highly dependent on the filtering procedure which is applied to signal in their convolutional layer. The present study aimed to address this problem by a...
متن کاملOn the convergence speed of artificial neural networks in the solving of linear systems
Artificial neural networks have the advantages such as learning, adaptation, fault-tolerance, parallelism and generalization. This paper is a scrutiny on the application of diverse learning methods in speed of convergence in neural networks. For this aim, first we introduce a perceptron method based on artificial neural networks which has been applied for solving a non-singula...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملReinforcement Learning in Neural Networks: A Survey
In recent years, researches on reinforcement learning (RL) have focused on bridging the gap between adaptive optimal control and bio-inspired learning techniques. Neural network reinforcement learning (NNRL) is among the most popular algorithms in the RL framework. The advantage of using neural networks enables the RL to search for optimal policies more efficiently in several real-life applicat...
متن کاملInvestigating the Impact of Virtual Social Networks on Social Capital and Organizational Learning Capabilities with the Mediating Role of Helpful Activities
Introduction: The main topic of this research is to Investigating the Impact of Virtual Social Networks on Social Capital and Organizational Learning Capabilities with the Mediating Role of Helpful Activities. An important feature of social networks is that it has become a place to share knowledge, which in turn contributes to the quantitative and qualitative improvement of social capital. Thus...
متن کامل